
Constraint reasoning over strings

Keith Golden1 and Wanlin Pang2

1 Computational Science Division, NASA Ames Research Center, Moffett Field, CA 94035
2 QSS Group Inc., NASA Ames Research Center, Moffett Field, CA 94035

Abstract. This paper discusses an approach to representing and reasoning about
constraints over strings. We discuss how many string domains can often be con-
cisely represented using regular languages, and how constraints over strings, and
domain operations on sets of strings, can be carried out using this representation.

1 Introduction

Constraint satisfaction problems (CSPs) involve finding values for variables subject to
constraints that permit or exclude certain combinations of values. Since many tasks in
computer science [12,5,24] and many real-world problems [25,13,17,22] can be formu-
lated as CSPs, they have been attracting widespread research and commercial interests
for the last two decades. Whereas much work has been done on constraints over fi-
nite discrete domains and numerical intervals, constraint reasoning over strings, by and
large, remains pretty much unexplored.

Strings appear everywhere. Like any other objects in the real-world, certain relation-
ships exist among strings and between strings and other objects. In many real-world ap-
plications those relationships can be formalized as constraints over strings. For example,
we are applying constraint-based planning to automate certain operations in software
domains [8,9], domains in which the actions are operations in a software environment,
such as moving files, searching for information on the internet or image processing. One
characteristic of nearly all software domains is the ubiquity of strings and constraints.
File path names, URLs and the contents of text files and web pages are all represented
as text, which often obey specific constraints. For instance, many programs have inputs
or outputs in the form of files, whose names follow some canonical form:

– A Java compiler expects the pathname for the source code of class “my.package.MyClass”
to be “my/package/MyClass.java,” and it produces a file “my/package/MyClass.class.”

– The pathname of data downlinked from a spacecraft or planetary rover is often in
a form like “phase2/sol29/my_instrument/seq0002.jpg,” where each component of
the pathname refers to some meaningful aspect of the data.

– The contents of structured or semistructured text files can be described in terms of
constraints between the text and what the text represents.

A distinguishing characteristic of software domains and others involving strings is that
the set of strings corresponding to a variable representing a given name, input or file is
either infinite or so large that listing them all would require unacceptable amounts of

time and storage. The challenge of effectively representing and reasoning about con-
straints on strings is to represent infinite string sets without actually requiring infinite
space and to deal with constraints over infinite string sets without exhustively listing
infinite string values. In this paper, we provide such a string representation, based on
regular languages; we discuss how common string constraints are defined and handled
using this representation; and we show how the string constraint problems can be solved
within the general-prupose constraint reasoning framework we have developed for an
on-going constraint-based planning project.

The remainder of the paper is organized as follows. In Section 2, we review nota-
tions of constraint satisfaction problems. In Section 3, we discuss string domain rep-
resentations, namely, as regular languages. In Section 4, we provide definitions of the
constraints on strings and desribe how they are enforced using this domain representa-
tion. In Section 5 we discuss how standard domain operations, such as intersection and
determining equality or cardinality, are handled. In Section 6, we analyize the compu-
tational complexity of all the operations involved in constraint reasoning using regular
domains. In Section 7, we show how the string constraints can be applied to solving
some interesting problems. And finally, in Section 8 we conclude by summerizing our
contribution.

2 Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP)is a representation and reasoning frame-
work consisting of variables, domains, and constraints. Formally, it can be defined
as a triple< X,D,C > where X = {x1,x2, . . . ,xn} is a finite set of variables,D =
{d(x1),d(x2), . . . ,d(xn)} is a set of domains containing values the variables may take,
andC = {C1,C2, . . . ,Cm} is a set of constraints. Each constraintCi is defined as a rela-
tion Ron a subset of variablesV = {xi ,x j , . . . ,xk}, called the constraint scope.Rmay be
represented extensionally as a subset of Cartesian productd(xi)×d(x j)× . . .×d(xk).
A constraintCi = (Vi ,Ri) limits the values the variables inV can take simultaneously
to those assignments that satisfyR. LetVK = {xk1, . . . ,xkl } be a subset ofX. An l -tuple
(xk1, . . . ,xkl) from d(xk1)× . . .×d(xkl) is called aninstantiationof variables inVK . An
instantiation is said to beconsistentif it satisfies all the constraints restricted inVK . A
consistent instantiation of all variables inX is asolution. The central reasoning task (or
the task of solving a CSP) is to find one or more solutions.

A CSP can be solved by search using, e.g., standard backtracking algorithm [4,10].
However, for CSPs with infinite domains such as the ones we are interested in this paper,
it is not guaranteed that a solution can be found by search alone, because it is infeasi-
ble to enumerate all values of infinite variable domains. Instead, the CSPs with infinite
domains need to be relaxed by consistency enforcement before or during the search. En-
forcing local consistency eliminates inconsistent values from variable domains [16,3].
In theory, if a given CSP has only one solution, enforcing a certain level of consistency
will eventually make every variable domain a singleton domain; if the CSP has more
than one solution, or infinitely many solutions, every remaining value in the domain
after consistency enforcement will be part of a solution. In practice, an effective con-
straint solving strategy enforces a certain level of consistency such as generalized arc

consistency [18,19] at each node of the search tree. A key issue is the trade-off between
time spent on propagation and the reduction in search space needed to allow feasible
and effecient search. Based on our experience dealing with constraint-based planning in
software enviornment, much depends on how the variable domains are represented and
how the constraints are evaluated or executed to enforce consistency. In the next three
sections, we focus on string domain representation and a definition of constraints over
string domains. These string constraints are in the constraint library of the constraint
reasoning system we implemented and, together with other numerical and boolean con-
straints, are used to model the planning problems.

3 String Domains

The domaind(x) of variablex is the set of values thatx can take. This set will, in
general, change during the course of search and constraint propagation. Typically, a
variable’s domain is represented as a list of the values that the variable can take. For
numeric domains, we can instead represent a domain as an interval, yielding substantial
decreases in space and time requirements and making it possible to represent an infinite
set of values [11]

In the domains of interest, we frequently want to represent infinite, or very large, sets
of strings, such as all possible pathnames matching a given pattern. Representing this
set as a list is clearly infeasible, since it is infinite. Intervals are equally inappropriate.
While it is possible to represent some sets of strings as intervals, such as all names
between “Jones” and “Smith” in the phone book, such intervals are far less useful in
practice than they are numeric intervals.

However, there is an alternative representation of sets of strings that is far more
useful, as evidenced by its ubiquity: regular languages. Regular languages are sets of
strings that are accepted by regular expressions or finite automata, which are widely
used in string matching, lexical analysis and many other applications. Although there
are many languages that are not regular, such as palindromes, regular languages provide
a nice tradeoff between expressiveness and tractability.

As we will discuss, not only can we enforce generalized arc consistency (GAC)
[3] for a wide range of useful string constraints when the domains are represented as
regular languages, but we can perform the domain operations necessary for constraint
propagation and search.

Regular languages are a much more flexible representation than intervals, in that the
set of regular languages is closed under intersection, union and negation, whereas the
set of intervals is only closed under intersection.

We use two different representations of regular languages: regular expressions and
finite automata. Regular expressions are used for input and are converted to FAs, which
are used computationally. Since regular expressions and FAs are well known, we will
not discuss them in depth, but we will briefly review for the sake of defining our termi-
nology.

A regular expression represents a regular language over an alphabetΣ. In our imple-
mentation,Σ is the set of Unicode characters. We use the following notation to describe
regular expressions.

Expression Accept
[abc] one of the charactersa,b,c
[a−c] one of the characters in the rangea−c
~[abc] any character inΣ excepta,b,c

. any character inΣ
\c the literal characterc

re1re2 re1followed byre2

re1|re2 eitherre1or re2

re∗ zero or more repetition ofre
re+ one or more repetitions ofre
re? zero or one occurrences ofre
(re) re (used to override precedence)

The purpose of the notation \c is to “quote” symbols that would otherwise be interpreted
as syntax characters. For example, \[can be use to refer to the character “[” and “\\”
refers to the character “\”.

We represent regular languages internally using FAs, since the latter are easier to
compute with that regular expressions. An FA is a pair< S ,T >, whereS is a set of
states andT is a set of labeled transitions between the states. Each transition inT is a
triple < n1, l ,n2 >, which we will write< n1

l→ n2 >, wheren1is the starting state of the
transition,n2is the ending state andl ∈ Σ is the transition label. The input to the FA is a
sequence of symbols fromΣ. Whenever there are symbols left to read, the FA reads the
next symbol and follows a transition from the current state whose labell is the symbol
just read. If there are multiple transitions labeledl , one is chosen nondeterministically.
If there are no transitions labeledl , the FA halts and returns failure. For efficiency, we
allow transitions to have sets of labels, represented using the same notation as is used

for regular expressions. For example, we could have a transition< n1
[a−zA−Z]→ n2 >,

meaning the transition will be taken if the symbol is any character from the English
alphabet. This is logically equivalent to having a separate transition for each symbol.
For notational convenience, we also refer to transitions labeled withε. An ε-transition
is always applicable and can be followed without reading any characters. An FA has a
singlestart state, which is always the first state,S [0], and zero or moreaccept states.
To determine whether a strings is in the language accepted by an FA< S ,T >, we
start the FA inS [0] and have it readsuntil there are no characters left to read. If, at that
time, the FA is in an accept state, thens is in the language. Otherwise, it is not. In our
visual depiction of FAs, states, transitions, start states and accept states are represented
as follows:

s1 s2 s3 s4s0
a

state transition start state accept state

A deterministic finite automaton (DFA), is an FA with no epsilon transitions and in
which there only one transition out of every state for each labell ∈ Σ. An FA that does
not satisfy these conditions is a nondeterministic FA (NFA). In the remainder of the pa-
per, we will assume an FA is an NFA unless stated otherwise. As is well known, NFAs

and DFAs have equivalent expressive power, in that both accept the family of regular
languages, but NFAs may be exponentially smaller. We call a domain represented using
a regular expression or FA aregular domain.

Regular expressions and FAs [15] have been used in many application domains
involving strings, such as data mining from databases or from web for discovering in-
teresting data patterns and web structures. For example, in [6], the authors addressed
the issue of mining frequent sequences from a database of sequences in the presence
of regular expression constraints (see [1] for detailed discussion on the issue of mining
sequential patterns). Regular expression constraints are user-defined sequence patterns
that are used tomatch strings in the database or web during query or search. Our work
differs from past work in that we do not simply use regular languages to match fixed
strings. Rather, we use them to propagate constraints among string variables, whose do-
mains may be infinite. For example,match is indeed a common constraint in our library.
However, the string being matched need not be singleton. In addition tomatch, many
other types of string constraints appearing in real-world problem need to be represented.
We discuss some common ones in the next section.

4 Constraints

Constraints are usually defined as mathematical formulations of relationships to be held
between objects. For example,x+y = z is a constraint describing an equalitiy relation
that holds among three numeric variablesx, y, andz. Similarly, for the string variablesx,
y, andz, we can define a string constraint asx+y = zwhich represents a concatenation
relation; that is, stringz is the concatenation of stringsx andy. We have implemented
a number of string constraints in our constraint reasoning framework, which supports
generalized arc consistency (GAC), even on infinite sets of strings. In the following, we
give definitions of these constraints, illustrated by how they are enforced using FAs.

4.1 Matches

One of the constraints in the library tests whether a string matches a given regular
expression:

matches(stringx, stringre)

Althoughmatches takes two arguments, it is essentially a unary constraint, because it
is not enforced unless the domain ofre is a singleton, in which case it computes the
FA corresponding to the regular expression represented byre and intersects it with the
domain ofx. Matches subsumes all possible unary constraints over strings expressible
in our formalism, so other possible constraints, such asallUpperCase in isAlphaNumeric
are not implemented.Matches is used in type constraints to define the initial domains
of variables of given subtypes of string. For example, we can define a Unix filename as
any string of non-zero length that does not contain the character ’/’:

matches(f n, “~[/]+”)

and we can define a time as a string of the form HH:MM:SS:

matches(d, “(([0−1][0−9]) |(2[0−3])) : [0−5][0−9] : [0−5][0−9]”)

4.2 Concatenation

s0

s3

s1 s2
b

sa

sb

sc

sd

e

a b

b a

a
e

a

a,b
b

sa

sb

sc

sd

a b

b a

s0

s3

s1 s2
ba

a

a,b
b

a a

Fig. 1.Concatenation

One of the most obvious operations on strings is concatenation. The concatenation
of two strings,x andy, yields another string,z, which consists of all the characters ofx
followed by all the characters ofy:

concat(z,x,y)

This can be generalized to concatenation of three or more strings in the obvious way.
If the domains ofx andy are regular, the domain ofz will simply be the result from
concatenating the FA representations ofx andy — that is, addingε-transitions from the
accept states of the FA forx to the start state of the FA fory, as shown in Figure 1,
obviously a linear-time operation.

Less obviously, if the domains ofx andzare regular, the domain ofy is also regular.
To construct an FA fory given FAs forx andz, we in effect traverse the FAs forzandx
in parallel, exploring the cross-product of the nodes from the two FAs, starting with the

pair of initial states and adding a transition{sn, tm}
lab→{sp, tq} from every node{sn, tm}

and every labellab such that the transitionssn
lab→ sp andtm

lab→ tq appear in the original
FAs (see Figure 2). This is simply the operation that is performed when intersecting
two FAs. Whenever we reach a node{s, t}, such that nodes is an accept state in the FA
for x, we mark nodet. After the traversal is complete, the marked nodes in the FA forz
represent all of the states that can be reached by reading a string accepted byx.

A new nondeterministic FA (NFA) fory is constructed by copying the FA forz,
making the start node a non-start node and making all the marked nodes new start
nodes. The complexity of the whole operation is dominated by generating the cross-
product FA (O(mn), wherem andn are the number of nodes in the FAs forx andz,
respectively). A similar procedure can be used to construct an NFA forx, given FAs for
y andz.

sa

sb

sc

sd

a b

b a

s0

s3

s1 s2
ba

a

a,b
b

a

s0,a

s1,ba

s3,c

b

s2,d
a

s1,c
a

s1,d
a

b

init
sb

sc

sd

b

a

a

e

e

e

Fig. 2.Given FAs forx(upper left) andz(upper right), find an FA fory such thatz is concatenation
of x andy. First, traverse FAs forz andx in parallel, constructing cross-product FA (lower left).
Then, identify states that are accept states forx and mark the corresponding states in the FA forz
(shaded circles). Construct a new NFA (lower right) fory by copying FA forzand making marked
nodes start nodes.

4.3 Containment

The relation

contains(Stringa, Stringb)

means that stringb is a substring ofa. If the domain ofb is a regular languager, then the
domain ofa is simply the regular expression “.*r.*”. Given an FA forr, we can create
an FA for “.*r.*” by adding new start and accept states that have self-loops on any string
(“.”), and connect them to the original start and accept states usingε-transitions (Figure
3). If we have some other FA representing the domain ofa, we simply intersect that
domain with the domain for “.*r.*”.

s0

s3

s1 s2
ba

a

a,b
b s0

s3

s1 s2
ba

a

a,b
b

init

final

e

.

.

e

e

Fig. 3. Given an FA for a regular languager, construct a new FA for .*r.*, strings that contain
strings inr.

Less obviously, if the domain ofa is regular, then so is the domain ofb. Given an
FA for a, we can construct an NFA forb by eliminating any dead-end nodes froma (that
is, nodes from which it is impossible to reach an accept node), adding a new start states,
with ε-transitions to all states, and then making all states ina accept states (Figure 4).
Again, we simply intersect this domain with the original domain forb to enforce the
constraint.

s0

s3

s1 s2
ba

a

a,b
b

s0

s3

s1 s2
ba

a

a,b
binit

e

e

e

e

Fig. 4.Given an FA for a regular languager, construct a new FA for all substrings of strings inr.

4.4 Length

Constraints on the length of a string can also be represented using FAs:

s0 s1
.

s2
. s3

.
s4

.
s5

. s0 s1
.

s2
.

s3
.

s4
.

s5
.

s0 s1
. s2

. s3
.

s4
.

s5
.

s0 s1
. s2

. s3
.

s4
.

s5
.

length = 5 length <= 5

length >= 5 3 <= length <= 5

As the bottom two examples show, intervals over the length are simple to represent; if
we have a constraint of the formlength(s,n), and the domain ofn is represented as a
finite interval, we can enforce the constraint without waiting untilnbecomes singleton.
We simply construct a linear FA whose size is one plus the upper bound ofn, and label
all of the states whose position exceeds the lower bound as accept states. Similarly, if
d(n) = [x,∞), we construct a linear FA of sizex+ 1 and make the last state an accept
state with a self-transition.

Conversely, if we have a regular domain representation ofs, we can obtain lower
and upper bounds forn by determining the shortest and longest paths from the start
state to an accept state, a linear-time operation. If there is no upper limit on the size,
there will be a loop along a path to an accept state.

4.5 Other constraints

Many other string constraints are straightforward to represent. Toreverse all strings in
a regular domain, we simply reverse the direction of all the transitions and reverse the
status of start and accept states in the FA. Tosubstitute one character for another, we
could perform the substitution on the labels of the transitions.Subsequences of strings
could be obtained using a combination ofconcat and length. For example, to specify
the 5-character prefixp of strings, we can writelength(p,5)∧concat(s, p, r), wherer is
an uncontrained string.

Another common operation on strings is to specify the character at a given location
of the string:characterAt(s,n,c), wherec is the character at positionn of strings. We
will assume thann is a constant. The case wheren is a variable can be handled in a
similar fashion, but is more complex. We apply the same general idea as thelength

constraint. In fact, for the character at positionn in a string to have any value at all,
the string must be at leastn characters long, so thecharacterAt constraint looks like the
constraintlength ≥ n, with the addition that the label of the transition leading to the
accept state is restricted to the domain ofc.

Given the domain ofs, we could similarly determine the domain ofc in O(n(|S |+
|T |)), by finding all states reachable inn−1 transitions from the start state, then taking
the union of the labels of transitions from which it is possible reach an accept state.

Of the constraints we have discussed,matches, concat, contains and reverse are
implemented in our constraint library. Implementation of the others is left as future
work.

5 Domain operations

In order to effectively eliminate inconsistent values from regular domains during con-
straint propagation, we need to be able to perform set operations on the domains, in-
cluding intersected two domains, determining whether one is a subset of another, and
determining whether a domain is empty or singleton. We can perform these operations
easily using FAs. It is well known that regular languages are closed under intersection,
union and negation, and the algorithms for performing these operations on FAs are both
straightforward and widely known, so we will not repeat them here, but we illustrate
them graphically as a reminder.

s0

s3

s1 s2
ba

a

a,b
b

sa

sb

sc

sd

a b

b a
s0,a

s1,ba

s3,c

b

s2,d
a

s1,c
a

a

s1,d
a

b

intersection

s0

s3

s1 s2
ba

a

a,b
b

sa

sb

sc

sd

a b

b a

init

e

e

a

union

s0

s3

s1 s2
ba

a

a,b
b

s0

s3

s1 s2
ba

a

a,b
b

s3

a,b
a,b

s3

a,b
a,b

negation

Of these set operations, intersection is used frequently in constraint propagation and
negation is useful for domain subtraction, subset tests and other operations, but union
is not a common set operation for domains. Superficially, it may seem that intersection

is the most expensive operation, since it potentially generates the cross-product of its
inputs, whereas union and negation take linear time in their inputs. However, union
produces an NFA and negation requires a DFA. Converting an NFA to a DFA potentially
generates the power set of the NFA, an exponential blowup.

Given these operations we can apply the following definitions to compute subset
and equality relations between two domains:

(f a1⊆ f a2)≡ (¬ f a2∩ f a1 = /0)
(f a1 = f a2)≡ (f a2⊆ f a1)∧ (f a1⊆ f a2)

5.1 Domain Size

It is important be be able to determine the size of a domain. For example, if the size is
0 (empty), then the constraint network is inconsistent. If the size is 1, then a value for
the corresponding variable is determined. If the size is small and finite, then it may be
appropriate to explicitly select a value in a search for a solution, but if the size is infinite,
then such a search may never terminate. Determining the size of a regular domain is less
straightforward than determining the size of a set or interval domain, but it can still be
done fairly efficiently.

Given an FA, we can determine the number of strings in the language as follows. We
begin by removing all dead-end states from the FA, a linear-time operation. A dead-end
state is a state from which it is impossible to reach an accept state. Once the dead-
end states are removed, if the FA contains any loops, then there are infinitely many
solutions, because we can follow a loop any number of times and then follow a path to
an accept state. We perform a topological sort of the FA, an operation that is linear in the
number of arcs. If the sort fails, then there is a loop and thus infinitely many solutions.
Otherwise, we traverse the graph in the order dictated by the topological sort, keeping
track of the number of paths there are from the initial state to the current state:

size(< S ,T >)

sortS topologically
pathsFromInit[0] = 1

numSolutions←
{

1 if isFinal(S [0])
0 otherwise

for i = 1 to |S |
foreach transition < ni

l→ nd >∈ T starting fromni if isFinal(nd)
[numSolutions += pathsFromInit[i]

pathsFromInit[d] += pathsFromInit[i]
return numSolutions

6 Complexity

All of the set operations and string constraints we have discussed are either linear or
quadratic in the size of the FAs representing the string domains. However, many oper-
ations, such as union, produce NFAs as outputs, and some, such as negation, require

DFAs as inputs. As noted, converting an NFA to a DFA may result in exponential
blowup in the size of the FA. Furthermore, even when every operation on the FA re-
sults in a polynomially larger FA, that can still mean exponential growth in the number
of operations, i.e., the number of constraints that contain the variable whose domain is
represented by the FA. Ultimately, how the FA grows will depend on the nature of the
problem at hand. The FA representation can be viewed as a compression of the full sets
of strings. It will tend to do well at compressing sets with a lot of symmetry and simple
structure, but will not do so well at compressing arbitrary lists of strings, where there
is little or no structure to exploit. In the latter cases, the representation will blow up,
converging toward an explicit list of the members. The exponential blowup in the rep-
resentation can be viewed as a failure in the exponential reduction that FAs are capable
of providing.

Using regular domains is worth considering in problems in which one of the fol-
lowing holds:

1. There is a great amount of symmetry or the domain is highly under-constrained.
In this case, the benefit of a precise domain representation should outweigh the
negligible cost in time and storage.

2. It is necessary to explicitly consider all possible domain values or solutions to the
CSP. In this case, the domain will have to be enumerated one way or the other. In
the worst case, a minimized FA requires space that is linear in the size of the list of
strings and could be arbitrarily better.

3. There are constraints over strings of unbounded length. In this case, the domain is
infinite. The only alternative to regular languages that we know of for representing
infinite sets of strings is to represent every infinite domain as the full domain (the
set of all strings). With regular domains, we can enforce generalized arc consistency
over infinite sets of strings, making it possible to solve problems that could not be
solved otherwise.

7 Examples

7.1 Pathname

In Unix, sets of files are often represented using regular expressions on their pathnames.
Correspondingly, regular domains are very useful for representing sets of files in a
constraint-based planning problem. In addition to the ability to represent large sets con-
cisely, we can also handle constraints that relate the file’s pathname to other attributes
of the file. For example, satellite images and other automatically generated data are typ-
ically stored in ordinary filesystems, with pathnames based on details of the data, such
as the time, subject, source, file format, etc. Suppose we have a remote archive in which
satellite images have pathnames of the form:

/downlink/< year >/<dayOfYear>/< sensor> <gridx><gridy>. <format>

We can represent this knowledge using a concatenation constraint:

rpn= concat(“/downlink/”, y, “/”, d, “/”, s, gx, gy, “.”, f mt).

Given only this knowledge, all we know aboutrpn is that the set of files is characterized
by the regular expression “/downlink/.*/.*/.*/.*\ ..*”. However, most likely we know
quite a bit about the other variables. We know how many years the satellite has been in
operation, how many days are in a year, the sensors aboard the satellite, the grid coor-
dinate system used to indicate the regions covered by the images, and the available for-
mats. Assuming we are interested in just a subset of the data, we can impose additional
constraints on these variables to specify just the files we are interested in. For example,
if we want MOD17 data from January 27, 2002 in either HDF or binary format, then the
domain ofrpn is “/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)”

String constraints are not just useful for specifying sets of files, but also specifying
the effects of file operations. Since the files are on a remote server, we can’t access them
directly, but we can copy them to a local disk. Suppose we executed the commandscp
-r server:/downlink/2002 local02 to copy the contents of the directory2002 to
the directorylocal02. We can describe the effect on the pathnames of the resulting
files using the pair of constraints:

1. concat(rpn, “/downlink/2002/”, ldir)
2. concat(l pn, “local02/”, ldir)

Since the concat constraint can be used to derive the domain of any variable, given the
domains of the other two variables, and since we know that the domain ofrpn (limited
to the files we care about) is

/downlink/2002/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)

we can enforce the first constraint to obtain the domain ofldir :

27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)

We can then apply the second constraint to obtain the domain ofl pn:

local02/27/MOD17[0-9][0-9][0-9][0-9]\.(hdf|bin)

If, after copying the files, we discovered that there are only HDF files, we could apply
the same constraints in the other direction to conclude that there were no binary files on
the server.

7.2 Crossword Puzzle

Another application of string constraints is to thecrossword puzzleproblem. Solving
crossword puzzles is a very popular pastime and also a well-studied problem in com-
puter science. The full problem of solving crossword puzzles, given only the puzzle
layout and a list of clues, is a hard problem that involves many aspects of AI [7,23].
A more commonly addressed simplification of the problem, in which a list of possible
words is given instead of clues, is more akin to creating crossword puzzles than solv-
ing them. This problem becomes a classic constraint satisfaction problem, where the
variables of the constraint problem are word slots on the puzzle board in which words

can be written, the domains of variables are available words, and the binary constraints
on variables enforce the agreement of letters at intersections between slots. Solving a
crossword puzzle reduces to finding a solution to the constraint problem: an assignment
of values to the variables such that each variable is assigned a value in its domain and
no constraint is violated.

We can use string constraints to formalize the crossword puzzle problem. There is
a variable for each slot, each intersection point and each contiguous segment of text
within a slot that does not cross an intersection. The variables for word slots take values
from all available words, the variables for intersection points take values of letters from
the alphabet, the variables for segments take values of unknown strings of fixed length.
Each word slot is constrained to be the concatenation of the segments and intersection
points that it contains.

For example, suppose that we have the following crossword puzzle that is taken
from http://yoda.cis.temple.edu:8080/UGAIWWW/lectures95/search/puzzle.html

The list of words:

AFT
ALE
EEL
HEEL
HIKE
HOSES
KEEL
KNOT

LASER
LEE
LINE
SAILS
SHEET
STEER
TIE

x1 x2 x3

x4 x5

x6 x7

x8

c1 c2

c3 c4 c5

c6 c7 c8

c9 c10 c11 c12

b1 b2

b3 b4

b5

b6

b7

b8

b9

To formalize this puzzle as a CSP with string constraints, we have

– 8 variables for the word slot as marked from x_1 to x_8
– 12 variables for those intersection points marked as c_i
– 9 variables for these segments marked as b_i

We have 8 constraints as follows:

1. concat(x1,b1,c1,b2,c2)
2. concat(x2,c1,b3,c3,c6,c10)
3. concat(x3,c2,b4,c5,c8,c12)
4. concat(x4,b5,c3,c4,c5)
5. concat(x5,c4,c7,c11,b6)
6. concat(x6,b7,c9,b8)
7. concat(x7,c6,c7,c8)
8. concat(x8,c9,b9,c10,c11,c12)

It is worth noting that, comparing to the traditional CSP formalization, we may have
many additional variables introduced to the formalized crossword puzzle problem, but
only thexi variables, that is, those variables representing word slots, need to be searched
during the CSP solving. Other variables will be assigned values by propagation. In fact,
with the constraint system we implemented to support a constraint-based planner, we
can solve the above crossword puzzle example without backtracking.

7.3 Bioinformatics

Constraint techniques have been applied to bioinformatics. For example, the authors in
[14] reported their work on applying a constraint-based approach to determining protein
structures. The problem of determining protein structures is modelled as a constraint
problem where variables are the Cartesian coordinates of each atoms in the protein,
and constraints are restrictions on these coordinates. In [20] an integer programming
(IP) approach, which can be seen as a special case of constraint formulation, is applied
to solving sequence alignment and protein threading problems in genetics. Numerical
constraints are also applied to genome mapping [21] and protein structure prediction
[2].

It is possible that string constraints could play an important role in applying con-
straint based approaches to bioinformatics. DNA, RNA and proteins can be represented
as strings. In the case of DNA, the letters are the familiar nucleotides A, G, C and T. In
the case of proteins, the letters are the 20 amino acids. Many problems in bioinformatics
involve matching DNA sequences against a database, a classic textual search problem in
which regular expressions are commonly used. Other problems, such as reconstructing
chromosomes from short DNA fragments (orclones), can be formalized as constraint
satisfaction problems or constrained optimization problems using string constraints, and
could be solved using advanced constraint satisfaction algorithms. However, this is left
as a future work.

8 Conclusions

We have discussed an approach to constraint reasoning over strings in which regular
languages are used to represent and reason about infinite sets of strings. Regular lan-
guages have a number of qualities to recommend them as a domain representation.

– They are closed under intersection, union and negation.
– They can concisely represent infinite sets of strings
– Many natural string constraints, such as concatenation, containment and length, can

be represented in terms of operations on regular languages
– They are widely used and well understood.

These advantages do come at a price; it can be substantially more costly to represent
and reason about regular languages than, say intervals. On the other hand, the time
and space complexity of constraint reasoning with regular languages can be literally
infinitely less than that of reasoning over explicit sets of strings.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. InProceedings of the 11th Interna-
tional Conference on Data Engineering, 1995.

2. R. Backofen. Constraint techniques for solving the protein structure prediction problem. In
Proceedings of CP-98, pages 72–86, 1998.

3. C. Bessiere and J. Ch. Arc-consistency for general constraint networks: Preliminary results.
In Proceedings of IJCAI-97, pages 398–404, Nagoya, Japan, August 1997.

4. J. R. Bitner and E. M. Reingold. Backtrack programming techniques.Communications of
the ACM, 18(11):651–656, 1975.

5. M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman and Co., 1979.

6. M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT:sequential pattern mining with regular
expression constraints. InProceedings of the 25th VLDB Conference, 1999.

7. M. Ginsberg, M. Frank, M. Halpin, and M. Torrance. Search lessons learned from crossword
puzzles. InProceedings AAAI-1990, pages 210–215, 1990.

8. K. Golden and J. Frank. Universal quantification in a constraint-based planner. InAIPS02,
2002.

9. Keith Golden. Automating the processing of earth observation data. In7th International
Symposium on Artificial Intelligence Robotics and Automation for Space, 2003.

10. S. W. Golomb and L. D. Baumert. Backtrack programming.Journal of the ACM, 12(4):516–
524, 1965.

11. T. Hickey, M. van Emden, and H. Wu. A unified framework for interval constraints and
interval arithmetic. InProceedings of CP-1998, pages 250–264, 1998.

12. T. R. Jensen and B. Toft.Graph Coloring Problems. Wiley-Interscience, New York, 1995.
13. A. J’onsson and J. Frank. A framework for dynamic constraint reasoning using procedural

constraints. InProceedings of ECAI-2000, 2000.
14. L. Krippahl and P. Barahona. Applying constraint programming to protein structure deter-

mination. InProceedings of CP-99, pages 289–302, 1999.
15. H. Lewis and C. Papadimitriou.Elements of the theory of computation.Prentice Hall Inc.,

1981.
16. A. Mackworth. Consistency in networks of relations.Artificial Intelligence, 8(1):99–118,

1977.
17. N. Muscettola. Computing the envolope for stepwise constant resource allocations. InPro-

ceedings of CP-2002, 2002.
18. B. A. Nadel. Consistent satisfaction algorithms.Computational Intelligence, 5:188–224,

1989.
19. P. Prosser. Hybrid algorithms for the constrain satisfaction problem.Computational Intelli-

gence, 9(3):268–299, 1993.
20. K. Reinert, H. Lenhof, P. Mutzel, and K. Melhorn andJ. Kececioglu. A branch-andcut al-

gorithm for multiple sequence alignment. InProceedings of the 1st Annual Internatioanl
Conferencs on Computational Molecular Biology, pages 241–249, 1997.

21. P. Revesz. Refining restriction enzyme genome maps.Constraints, 2:361, 1997.
22. F. Rossi, A. Sperduti, K. Venable, L. Khatib, P. Morris, and R. Morris. Learning and solving

soft temporal constraints: An experimental study. InProceedings of CP-2002, 2002.
23. N. Shazeer, M. Littman, and G. Keim. Solving crossword puzzles as probabilistic constraint

satisfaction. InProceedings of AAAI-1999, 1999.
24. D. L. Waltz. Understanding line drawings of scenes with shadows. In P. H. Winston, editor,

The Psychology of Computer Vision, pages 19–91. McGraw-Hill, 1975.
25. Monte Zweben and Mark S. Fox.Intelligent Scheduling. Morgan Kaufmann Publishers, San

Francisco, California, 1994.

